امروز: چهارشنبه 21 آذر 1397
دسته بندی محصولات
بخش همکاران
بلوک کد اختصاصی

دانلود فایل شبکه های عصبی

دانلود فایل شبکه های عصبی دسته: کامپیوتر و IT
بازدید: 5 بار
فرمت فایل: doc
حجم فایل: 636 کیلوبایت
تعداد صفحات فایل: 96

شبکه های عصبی یادگیری در سیستم های بیولوژیک نرون پایه عملیات شبکه های عصبی هاپفیلد ماشین بولتزمن

قیمت فایل فقط 16,500 تومان

خرید


فهرست مطالب

             مقدمه                  

                                              شبكه عصبی چیست                                                                                                        

یادگیری در سیستم های بیولوژیك                                                                                         

سازمان مغز                                                                                                                                                                                                 

نرون پایه                                                                                                                       

عملیات شبکه های عصبی                                                                                                             

آموزش شبکه های عصبی                                                                                                   

            معرفی چند نوع شبکه عصبی                                                                                             

                                      پرسپترون تک لایه                                                                                                             

                         پرسپترون چند لایه                                                                                                           

                   backpropagation

                                                      هاپفیلد                                                                                                                             

          ماشین  بولتزمن                                                                                                                            

                                                      کوهونن                                                                                                                           

                                        کاربردهای شبکه های عصبی                                                                                               

         منابع    

     مقدمه

الگوریتم ها در كامپیوتر ها اعمال مشخص و واضحی هستند كه بصورت پی در پی و در جهت رسیدن به هدف خاصی انجام می شوند.حتی در تعریف الگوریتم این گونه آمده است كه الگوریتم عبارت است از مجموعه ای ازاعمال واضح كه دنبال ای از عملیات را برای رسیدن به هدف خاصی دنبال می كنند.آنچه در این تعریف خود نمایی می كند كلمه دنباله می باشد كه به معنای انجام كار ها بصورت گام به گام می باشد. این امر مشخص می كند كه همه چیز در الگوریتم های سنتی باید قدم به قدم برای كامپیوتر مشخص و قابل فهم و درك باشد.حتی در اولین الگوریتمهای هوش مصنوعی نیز بر همین پایه و كار قدم به قدم بنا نهاده شده اند.

در اواخرقرن بیستم رویكرد به الگوریتم های جدید صورت گرفت كه علتهای مختلفی داشت مثل حجیم بودن میزان محاسبات برخی مسایل و بالا بودن مرتبه زمانی الگوریتم های سنتی در مورد این مسایل باعث شد نیاز به الگوریتمهای جدید احساس شود.همچنین برخی كارهای انسان كه هنوز قابل انجام توسط كامپیوتر نبودندو یا به بخوبی توسط كامپیوتر انجام نمی شدند باعث این رویكرد شد.

مهمترین الگوریتمهای جدید عبارتند از :1- شبكه های عصبی 2- منطق فازی  3- محاسبات تكاملی

شبكه عصبی چیست ؟

این سوال كه آیا انسان توانا تر است یا كامپیوتر موضوعی است كه ذهن بشر را به خود مشغول كرده است.

اگر جواب این سوال انسان است چرا كامپیوتر اعمالی مانند جمع و ضرب و محاسبات پیچیده را در كسری از ثانیه انجام می دهد، حال آنكه انسان برای انجام آن به زمان زیادی نیازمند است. واگر جواب آن كامپیوتر است چرا كامپیوتر از اعمالی مانند دیدن و شنیدن كه انسان به راحتی آنها را انجام می دهدعاجزاست.جواب این مسئله را باید در ذات اعمال جستجو كرد . اعمال محاسباتی اعمالی هستند سریالی و پی در پی به همین دلیل توسط كامپیوتر به خوبی انجام می شوند.حال آنكه اعمالی مانند دیدن وشنیدن كارهای هستند موازی كه مجمو عه ای از داده های متفاوت و متضاد در آنها تفكیك و پردازش می شوندو به همین دلیل توسط انسان به خوبی انجام می شوند. در واقع مغز انسان اعمال موازی را به خوبی درك و آنها را انجام می دهدو كامپیوتر اعمال سریالی را بهتر انجام می د هد.حال باید دیدآیا می توان این اعمال موازی و در واقع ساختار مغز انسان را به نوعی در كامپیوتر شبیه سازی كرد و آیا می توان امكان یادگیری كه از جمله توانایی های انسان است به نوعی در كامپیوتر مدل سازی نمود.این كار به نوعی در انسان هم انجام می شود و زمان انجام آن عمدتا در كودكی است.به عنوان مثال یك كودك ممكن است یك شی مانند چكش را نشناسد اما هنگامی كه آن را می بیند واسم آن را یاد می گیرد و سپس چند چكش متفاوت را می بینداین شی را بخوبی می شناسدو اگر بعد  از مدتی چكشی را كه تا كنون آن را ندیده است ببیند به راحتی تشخیص می دهد  كه شی مورد نظر یك چكش است و تنها از نظر جزئیات با چكش های مشابه كه قبلا دیده است تفاوت دارد.

لازم به ذكر است كه شبكه های عصبی تنها در یادگیری كاربرد ندارند، بلكه تمام مسائل جدید وكلاسیك توسط آنها قابل حل می باشد.اما آنچه شبكه های عصبی بدان نیازمند است مثالها و نمونه های مفید وكافی است كه بتواند به خوبی فضای مسئله را پوشش دهند.حال باید دیدچگونه می توان شبكه عصبی انسان را به نوعی شبیه سازی نمود، برای این كار نخست به ساختار مغز و سیستم عصبی انسان نگاهی گذرا می اندازیم.

مغز انسان یكی از پیچیده ترین اعضای بدن است كه تا كنون نیز به درستی شناخته نشده است و شاید اگر روزی به درستی شناخته شودبتوان شبیه سازی بهتری از آن انجام داد و به نتایج بهتری درباره هوش مصنوعی رسید.تحقیقات در مورد شبكه های عصبی نیز از زمانی آغاز شد كه رامون سگال درباره ساختار مغز و اجزای تشكیل دهنده آن اطلاعات و نظراتی ارائه كرد. او در اوایل قرن بیستم مغز را به عنوان اجتماعی از اجزای كوچك محاسباتی دانست و آنها را نرون نامید.امروزه ما می دانیم كه بیشتر فعالیتهای انسان را نرونها انجام می دهندو در كوچكترین فعالیتهای حیاتی انسان مانند پلك زدن نیز نقش حیاتی و اساسی دارند.این نكته هم بسیار جالب است بدانید كه در بدن ما حدودنرون وجود دارد كه هر كدام از این نرونها با  نرون دیگر در ارتباط هستند.نرونها شكلها و انواع مختلفی دارند، اما به طور عمده در سه دسته تقسیم بندی می شوند. اما نرون ها از نظری دیگر به دو دسته تقسیم می شوند:1- نرونهای داخلی مغز كه در فاصله های حدود 100میكرون به یكدیگر متصلند ونرونهای خارجی كه قسمتهای مختلف مغز را به یكدیگر و مغز را به ماهیچه ها و اعضای حسی را به مغز متصل می كنند.اما همانطور كه گفتیم نرونها از نظری دیگر به سه دسته تقسیم می شوند كه عبارتند از:

1- نرونهای حسی : كاری كه این نرونها انجام می دهند این است كه اطلاعات را از اندام های حسی بدن به مغز و نخاع می رسانند.

2- نرونهای محرك :این نرونهافرمانهای مغز و نخاع را به ماهیچه ها و غدد و سایر اندام های حسی و تحت فرمان مغز می رسانند.

3- نرونهای ارتباطی : این نرونها مانندیك ایستگاه ارتباطی بین نرونهای حسی ونرونهای محرك عمل می كنند .

گفتنی است كه نرون ها در همه جای بدن هستند وبه عنوان عنصر اصلی مغز محسوب می شوندوبه تنهایی مانند یك واحد پردازش منطقی عمل می كنند نحوه عملیات نرون بسیار پیچیده است و هنوز در سطح میكروسكوپی چندان شناخته شده نیست ، هر چند قوانین پایه آن نسبتا روشن است. هر نرون ورودی های متعددی را پذیرا است كه با یكدیگر به طریقی جمع می شوند. اگر در یك لحظه تعداد ورودی های فعال

نرون به حد كفایت برسدنرون نیز فعال شده و آتش  می كند. در غیر این صورت نرون به صورت غیر فعال و آرام باقی می ماند.حال به بررسی اجزاءخود نرون می پردازیم:

نرون از یك بدنه اصلی تشكبل شده است كه به آن سوما گفته می شود. به سوما رشته های نا منظم طولانی متصل است كه به آنها دندریت می گویند. قطر این رشته ها اغلب از یك میكرون نازكتر است و اشكال شاخه ای پیچیده ای دارند.شكل ظریف آنها شبیه شاخه های درخت بدون برگ است كه هر شاخه بارها وبارها به شاخه های نازكتری منشعب می شود.دندریت ها نقش اتصالاتی را دارندكه ورودی هارا به نرون ها می رساند.این سلولها می توانندعملیاتی پیچیده تر از ععملیات جمع ساده را بر ورودی های خود انجام دهند، از این رو عمل جمع ساده را می توان به عنوان تقریب قابل قبولی از عملیات واقعی نرون به حساب آورد.

یكی از عناصر عصبی متصل به هسته نرون آكسون نامیده می شود.این عنصر بر خلاف دندریت از نظر الكتریكی فعال است و به عنوان خروجی نرون عمل می كند. آكسون همیشه در روی خروجی سلولها مشاهده می شوند لیكن اغلب در ار تباط های بین نرونی غایب اند.در این مواقع خروجی ها و ورودی ها هر دو بر روی دندریت هاواقع می شوند. آكسون وسیله ای غیر خطی است كه در هنگام تجاوز پتانسیل ساكن داخل هسته از حد معینی پالس ولتاژی را به میزان یك هزارم ثانیه ، به نام پتانسیل فعالیت ، تولید می كند. این پتانسیل فعالیت در واقع یك سری از پرش های سریع ولتاژ است.رشته آكسون در نقطه تماس معینی به نام سیناپس قطع می شود ودر این مكان به دندریت سلول دیگر وصل می گردد. در واقع این تماس به صورت اتصال مستقیم نیست بلكه از طریق ماده شیمیایی موقتی صورت می گیرد.سیناپس پس از آنكه پتانسیل آن از طریق پتانسیل های فعالیت در یافتی از طریق آكسون به اندازه كافی افزایش یافته از خود ماده شیمیایی منتقل كننده عصبی ترشح می كند.برای این ترشح ممكن است به دریافت بیش از یك پتانسیل فعالیت نیاز باشد. منتقل كننده عصبی ترشح شده در شكاف بین آكسون ودندریت پخش می شودو باعث می گرددمی گردد كه دروازه های موجود در دندریت ها فعال شده و باز شود و بدین صورت یون های شارژ شده وارد دندریت می شوند. این جریان یون است كه باعث می شود پتانسیل دندریت افزایش یافته  و باعث یك پالس ولتاژ در دندریت شودكه پس از آن منتقل شده و وارد بدن نرون دیگر می گردد. هر دندریت ممكن است تحت تأثیرتعداد زیادی سیناپس باشد وبدین صورت اتصالات داخلی زیادی را ممكن می سازد. در اتصالات سیناپسی تعداد دروازه های باز شده بستگی به مقدار منتقل كننده عصبی آزاد شده داردو همچنین به نظر می رسدكه پاره ای سیناپس ها باعث تحریك دندریت ها می شوند در صورتی كه پاره ای سیناپس ها دندریت ها را از تحریك باز می دارند. این به معنای تغییر پتانسیل محلی  دندریت ها در جهت مثبت یا منفی می باشد.یك نرون خود به تنهایی می تواند دارای ورودی های سیناپسی متعددی در روی دندریت های خود باشد و ممكن است با خروجی های سیناپسی متعددی به دندریت های نرون دیگر وصل شود.

یادگیری در سیستم های بیولوژیك

تصور می شود یادگیری هنگامی صورت می گیرد كه شدت اتصال یك سلول و سلول دیگر در محل سیناپس ها اصلاح می گردد.به نظر می رسد كه این مقصود از طریق ایجاد سهولت بیشتر در میزان آزاد شدن

ناقل شیمیایی حاصل می گردد. این حالت باعث می شود كه دروازه های بیشتری روی دندریت های سمت مقابل باز شود و به این صورت باعث افزایش میزان اتصال دو سلول شود. تغییر میزان اتصال نرون ها به صورتی كه باعث تقویت تماس های مطلوب شود از مشخصه های مهم در مدل های شبكه های عصبی است.


فایل ورد 96 صفحه

قیمت فایل فقط 16,500 تومان

خرید

برچسب ها : شبکه های عصبی , یادگیری در سیستم های بیولوژیک نرون پایه , عملیات شبکه های عصبی , هاپفیلد , ماشین بولتزمن

نظرات کاربران در مورد این کالا
تا کنون هیچ نظری درباره این کالا ثبت نگردیده است.
ارسال نظر